Defined Types
We provide two new types that are subtypes of AbstractIMF
, which itself is a subtype of Distributions.ContinuousUnivariateDistribution
and generally follow the API provided by Distributions.jl
. These are
InitialMassFunctions.AbstractIMF
— TypeAbstract type for IMFs; a subtype of Distributions.ContinuousUnivariateDistribution
, as all IMF models can be described as continuous, univariate PDFs.
InitialMassFunctions.BrokenPowerLaw
— TypeBrokenPowerLaw(α::AbstractVector{T}, breakpoints::AbstractVector{S}) where {T<:Real,S<:Real}
BrokenPowerLaw(α::Tuple, breakpoints::Tuple)
BrokenPowerLaw{T}(A::Vector{T}, α::Vector{T}, breakpoints::Vector{T}) where {T}
An AbstractIMF <: Distributions.ContinuousUnivariateDistribution
that describes a broken power-law IMF with probability distribution
\[ \frac{dn(m)}{dm} = A \times m^{-\alpha}\]
that is defined piecewise with different normalizations A
and power law slopes α
in different mass ranges. The normalization constants A
will be calculated automatically after you provide the power law slopes and break points.
Arguments
α
; the power-law slopes of the different segments of the broken power law.breakpoints
; the masses at which the power law slopes change. Iflength(α)=n
, thenlength(breakpoints)=n+1
.
Examples
BrokenPowerLaw([1.35,2.35],[0.08,1.0,Inf])
will instantiate a broken power law defined from a minimum mass of 0.08
to a maximum mass of Inf
with a single switch in α
at m=1.0
. From 0.08 ≤ m ≤ 1.0
, α = 1.35
and from 1.0 ≤ m ≤ Inf
, α = 2.35
.
Notes
There is some setup necessary for quantile
and other derived methods, so it is more efficient to call these methods directly with an array via the call signature quantile(d::BrokenPowerLaw{T}, x::AbstractArray{S})
rather than broadcasting over x
. This behavior is now deprecated for quantile(d::Distributions.UnivariateDistribution, X::AbstractArray)
in Distributions.jl.
Methods
Base.convert(::Type{BrokenPowerLaw{T}}, d::BrokenPowerLaw)
minimum(d::BrokenPowerLaw)
maximum(d::BrokenPowerLaw)
partype(d::BrokenPowerLaw)
eltype(d::BrokenPowerLaw)
mean(d::BrokenPowerLaw)
median(d::BrokenPowerLaw)
var(d::BrokenPowerLaw)
, may not function correctly for largemmax
skewness(d::BrokenPowerLaw)
, may not function correctly for largemmax
kurtosis(d::BrokenPowerLaw)
, may not function correctly for largemmax
pdf(d::BrokenPowerLaw,x::Real)
logpdf(d::BrokenPowerLaw,x::Real)
cdf(d::BrokenPowerLaw,x::Real)
ccdf(d::BrokenPowerLaw,x::Real)
quantile(d::BrokenPowerLaw{S},x::T) where {S,T<:Real}
quantile!(result::AbstractArray,d::BrokenPowerLaw{S},x::AbstractArray{T}) where {S,T<:Real}
quantile(d::BrokenPowerLaw{T},x::AbstractArray{S})
cquantile(d::BrokenPowerLaw{S},x::T) where {S,T<:Real}
rand(rng::AbstractRNG, d::BrokenPowerLaw,s...)
- Other methods from
Distributions.jl
should also work becauseBrokenPowerLaw <: AbstractIMF <: Distributions.ContinuousUnivariateDistribution
. For example,rand!(rng::AbstractRNG, d::BrokenPowerLaw, x::AbstractArray)
.
InitialMassFunctions.LogNormalBPL
— TypeLogNormalBPL(μ::Real,σ::Real,α::AbstractVector{<:Real},breakpoints::AbstractVector{<:Real})
LogNormalBPL(μ::Real,σ::Real,α::Tuple,breakpoints::Tuple)
A LogNormal distribution at low masses, with a broken power law extension at high masses. This uses the natural log base like Distributions.LogNormal; if you have σ and μ in base 10, then multiply them both by log(10)
. Must have length(α) == length(breakpoints)-2
. The probability distribution for this IMF model is
\[ \frac{dn(m)}{dm} = \frac{A}{x} \, \exp \left[ \frac{ -\left( \log(x) - \mu \right)^2}{2\sigma^2} \right]\]
for m < breakpoints[2]
, with a broken power law extension above this mass. See BrokenPowerLaw
for interface details; the α
and breakpoints
are the same here as there.
Arguments
μ
; see Distributions.LogNormalσ
; see Distributions.LogNormalα
; list of power law indices withlength(α) == length(breakpoints)-2
.breakpoints
; list of masses that signal breaks in the IMF. MUST BE SORTED and bracketed withbreakpoints[1]
being the minimum valid mass andbreakpoints[end]
being the maximum valid mass.
Examples
If you want a LogNormalBPL
with a characteristic mass of 0.5 solar masses, log10 standard deviation of 0.6, and a single power law extension with slope α=2.35
with a break at 1 solar mass, you would do LogNormalBPL(log(0.5),0.6*log(10),[2.35],[0.08,1.0,Inf]
where we set the minimum mass to 0.08
and maximum mass to Inf
. If, instead, you know that log10(m)=x
, where m
is the characteristic mass of the LogNormal
component, you would do LogNormalBPL(x*log(10),0.6*log(10),[2.35],[0.08,1.0,Inf]
.
Notes
There is some setup necessary for quantile
and other derived methods, so it is more efficient to call these methods directly with an array via the call signature quantile(d::LogNormalBPL{T}, x::AbstractArray{S})
rather than broadcasting over x
. This behavior is now deprecated for quantile(d::Distributions.UnivariateDistribution, X::AbstractArray)
in Distributions.jl.
Methods
Base.convert(::Type{LogNormalBPL{T}}, d::LogNormalBPL)
minimum(d::LogNormalBPL)
maximum(d::LogNormalBPL)
partype(d::LogNormalBPL)
eltype(d::LogNormalBPL)
mean(d::LogNormalBPL)
median(d::LogNormalBPL)
pdf(d::LogNormalBPL,x::Real)
logpdf(d::LogNormalBPL,x::Real)
cdf(d::LogNormalBPL,x::Real)
ccdf(d::LogNormalBPL,x::Real)
quantile(d::LogNormalBPL{S},x::T) where {S,T<:Real}
quantile!(result::AbstractArray,d::LogNormalBPL{S},x::AbstractArray{T}) where {S,T<:Real}
quantile(d::LogNormalBPL{T},x::AbstractArray{S})
cquantile(d::LogNormalBPL{S},x::T) where {S,T<:Real}
rand(rng::AbstractRNG, d::LogNormalBPL,s...)
- Other methods from
Distributions.jl
should also work becauseLogNormalBPL <: AbstractIMF <: Distributions.ContinuousUnivariateDistribution
. For example,rand!(rng::AbstractRNG, d::LogNormalBPL, x::AbstractArray)
.