Defined Types

We provide two new types that are subtypes of AbstractIMF, which itself is a subtype of Distributions.ContinuousUnivariateDistribution and generally follow the API provided by Distributions.jl. These are

InitialMassFunctions.AbstractIMFType

Abstract type for IMFs; a subtype of Distributions.ContinuousUnivariateDistribution, as all IMF models can be described as continuous, univariate PDFs.

source
InitialMassFunctions.BrokenPowerLawType
BrokenPowerLaw(α::AbstractVector{T}, breakpoints::AbstractVector{S}) where {T<:Real,S<:Real}
BrokenPowerLaw(α::Tuple, breakpoints::Tuple)
BrokenPowerLaw{T}(A::Vector{T}, α::Vector{T}, breakpoints::Vector{T}) where {T}

An AbstractIMF <: Distributions.ContinuousUnivariateDistribution that describes a broken power-law IMF with probability distribution

\[ \frac{dn(m)}{dm} = A \times m^{-\alpha}\]

that is defined piecewise with different normalizations A and power law slopes α in different mass ranges. The normalization constants A will be calculated automatically after you provide the power law slopes and break points.

Arguments

  • α; the power-law slopes of the different segments of the broken power law.
  • breakpoints; the masses at which the power law slopes change. If length(α)=n, then length(breakpoints)=n+1.

Examples

BrokenPowerLaw([1.35,2.35],[0.08,1.0,Inf]) will instantiate a broken power law defined from a minimum mass of 0.08 to a maximum mass of Inf with a single switch in α at m=1.0. From 0.08 ≤ m ≤ 1.0, α = 1.35 and from 1.0 ≤ m ≤ Inf, α = 2.35.

Notes

There is some setup necessary for quantile and other derived methods, so it is more efficient to call these methods directly with an array via the call signature quantile(d::BrokenPowerLaw{T}, x::AbstractArray{S}) rather than broadcasting over x. This behavior is now deprecated for quantile(d::Distributions.UnivariateDistribution, X::AbstractArray) in Distributions.jl.

Methods

  • Base.convert(::Type{BrokenPowerLaw{T}}, d::BrokenPowerLaw)
  • minimum(d::BrokenPowerLaw)
  • maximum(d::BrokenPowerLaw)
  • partype(d::BrokenPowerLaw)
  • eltype(d::BrokenPowerLaw)
  • mean(d::BrokenPowerLaw)
  • median(d::BrokenPowerLaw)
  • var(d::BrokenPowerLaw), may not function correctly for large mmax
  • skewness(d::BrokenPowerLaw), may not function correctly for large mmax
  • kurtosis(d::BrokenPowerLaw), may not function correctly for large mmax
  • pdf(d::BrokenPowerLaw,x::Real)
  • logpdf(d::BrokenPowerLaw,x::Real)
  • cdf(d::BrokenPowerLaw,x::Real)
  • ccdf(d::BrokenPowerLaw,x::Real)
  • quantile(d::BrokenPowerLaw{S},x::T) where {S,T<:Real}
  • quantile!(result::AbstractArray,d::BrokenPowerLaw{S},x::AbstractArray{T}) where {S,T<:Real}
  • quantile(d::BrokenPowerLaw{T},x::AbstractArray{S})
  • cquantile(d::BrokenPowerLaw{S},x::T) where {S,T<:Real}
  • rand(rng::AbstractRNG, d::BrokenPowerLaw,s...)
  • Other methods from Distributions.jl should also work because BrokenPowerLaw <: AbstractIMF <: Distributions.ContinuousUnivariateDistribution. For example, rand!(rng::AbstractRNG, d::BrokenPowerLaw, x::AbstractArray).
source
InitialMassFunctions.LogNormalBPLType
LogNormalBPL(μ::Real,σ::Real,α::AbstractVector{<:Real},breakpoints::AbstractVector{<:Real})
LogNormalBPL(μ::Real,σ::Real,α::Tuple,breakpoints::Tuple)

A LogNormal distribution at low masses, with a broken power law extension at high masses. This uses the natural log base like Distributions.LogNormal; if you have σ and μ in base 10, then multiply them both by log(10). Must have length(α) == length(breakpoints)-2. The probability distribution for this IMF model is

\[ \frac{dn(m)}{dm} = \frac{A}{x} \, \exp \left[ \frac{ -\left( \log(x) - \mu \right)^2}{2\sigma^2} \right]\]

for m < breakpoints[2], with a broken power law extension above this mass. See BrokenPowerLaw for interface details; the α and breakpoints are the same here as there.

Arguments

  • μ; see Distributions.LogNormal
  • σ; see Distributions.LogNormal
  • α; list of power law indices with length(α) == length(breakpoints)-2.
  • breakpoints; list of masses that signal breaks in the IMF. MUST BE SORTED and bracketed with breakpoints[1] being the minimum valid mass and breakpoints[end] being the maximum valid mass.

Examples

If you want a LogNormalBPL with a characteristic mass of 0.5 solar masses, log10 standard deviation of 0.6, and a single power law extension with slope α=2.35 with a break at 1 solar mass, you would do LogNormalBPL(log(0.5),0.6*log(10),[2.35],[0.08,1.0,Inf] where we set the minimum mass to 0.08 and maximum mass to Inf. If, instead, you know that log10(m)=x, where m is the characteristic mass of the LogNormal component, you would do LogNormalBPL(x*log(10),0.6*log(10),[2.35],[0.08,1.0,Inf].

Notes

There is some setup necessary for quantile and other derived methods, so it is more efficient to call these methods directly with an array via the call signature quantile(d::LogNormalBPL{T}, x::AbstractArray{S}) rather than broadcasting over x. This behavior is now deprecated for quantile(d::Distributions.UnivariateDistribution, X::AbstractArray) in Distributions.jl.

Methods

  • Base.convert(::Type{LogNormalBPL{T}}, d::LogNormalBPL)
  • minimum(d::LogNormalBPL)
  • maximum(d::LogNormalBPL)
  • partype(d::LogNormalBPL)
  • eltype(d::LogNormalBPL)
  • mean(d::LogNormalBPL)
  • median(d::LogNormalBPL)
  • pdf(d::LogNormalBPL,x::Real)
  • logpdf(d::LogNormalBPL,x::Real)
  • cdf(d::LogNormalBPL,x::Real)
  • ccdf(d::LogNormalBPL,x::Real)
  • quantile(d::LogNormalBPL{S},x::T) where {S,T<:Real}
  • quantile!(result::AbstractArray,d::LogNormalBPL{S},x::AbstractArray{T}) where {S,T<:Real}
  • quantile(d::LogNormalBPL{T},x::AbstractArray{S})
  • cquantile(d::LogNormalBPL{S},x::T) where {S,T<:Real}
  • rand(rng::AbstractRNG, d::LogNormalBPL,s...)
  • Other methods from Distributions.jl should also work because LogNormalBPL <: AbstractIMF <: Distributions.ContinuousUnivariateDistribution. For example, rand!(rng::AbstractRNG, d::LogNormalBPL, x::AbstractArray).
source